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Transient diffusion-mediated reversible association accompanied by generation and decay is studied using
the method of convolution kinetics for the general scheme of intermolecular two-state excited-state processes.
This scheme describes several important photochemical and photophysical processes including excimer
formation, acid-base equilibria in the excited state, and association-dissociation of ions with their fluorescent
indicators. The convolution-type integral kinetic equations are derived. The relation of the present approach
to the extended Smoluchowski method is discussed.

I. Introduction

Recent developments in picosecond fluorometry combined
with the global treatment of experimental fluorescence decays
allow detailed kinetic studies of complex photophysical
processes.1-3 The standard global analysis recovers the phe-
nomenological rateconstants,4 which mix forward and reverse
microscopic diffusional and reactive fluxes and, therefore, do
not allow a direct determination of the relevant molecular
quantities: the intrinsic rates, encounter distances, and diffusion
coefficients. In order to utilize the information contained in
transient kinetics, one needs to develop a description of
diffusional nonequilibrium effects for complex kinetic schemes.
In the present paper we pursue this issue and develop a theory
of transient diffusion-mediated kinetics of the reversible two-
state excited-state processes as depicted in Scheme 1.
The stars on 1* and 2* indicate the excited state of species

1 and 2. The first subscript on a rate constant or coefficient
refers to the product molecule, 1* or 2*, and the second to the
reactant molecule. The ground-state species are denoted by a
0. The notation [1*] , [2*], and [Q] means the concentration
of the corresponding species. We will assume that the excitation
is weak so that the ground-state equilibrium is not disturbed,
[1] ) const. and [2]) const., and that the concentration of M
is such that the association 1*+ M f 2* is pseudo-first-order.
The molecular rate coefficientk21

m(t) is defined as the propor-
tionality coefficient between themolecularrate of the process
()the number of elementary reactive events per unit volume
and time) and the density of reactive pairs.4-6 The rate
coefficient k21

m(t) reflects the time evolution of the spatial
distribution of 1*M pairs. For slow association, 1*+ M f
2*, this distribution is an equilibrium one and the molecular
coefficientk21

m(t) is equal to the intrinsic rate constantk21
0 . For

rapid association, spatial disequilibrium develops andk21
m(t)

deviates fromk21
0 . Scheme 1 describes several important

photochemical and photophysical processes including excimer
formation, acid-base base equilibria in the excited state, and
association-dissociation of ions with fluorescent ion indicators.
Transient effects on bimolecular reactions have recently been

a subject of considerable interest from both theoretical and
experimental viewpoints.4-17 The various approaches to tran-
sient kinetics can be roughly classified as related to the method

of convolution kinetics10-12 or as an extended Smoluchowski-
type method.4,8,17 Both methods are based on Smoluchowski’s
idea that fast reaction in combination with slow diffusion leads
to spatial disequilibrium and that this disequilibrium can be
understood in terms of a diffusion equation which is modified
(e.g. via boundary conditions) to allow for the effect of reaction.
The convolution and extended Smoluchowski approaches are
equivalent8 for the basicirreVersible reaction 1*+ M f 2*.
The difference shows up, however, in the way concurrent
processes (excitation, back reaction) are treated.

The approach that we adopt here is the convolution kinetics,
which has proved useful in describing complex schemes relevant
to photochemical kinetics.7-12 Specifically, Agmon and Szabo7-9

focused on reversible association, and on its combination with
decay,8 and Berberan-Santos and Marthino10-12 dealt with the
excimer formation Scheme 2. In this work, we extend the
convolution formalism to include generation and decay in the
excited-state kinetics of Scheme 1. Our motivation is, in part,
to develop a formalism that can be incorporated into the global
analysis of experimental data.

This paper is organized as follows. In the next section we
present the main result of this work and compare the kinetic
treatment of Scheme 1 in terms of the rate equations and
convolution kinetics. The integral convolution kinetic equations
are derived in section III. In section IV, limiting cases of the
formalism are considered. Finally, in section V we make some
comments and summarize the paper.X Abstract published inAdVance ACS Abstracts,June 1, 1997.

SCHEME 1: Reversible Excited-State Association with
Generation and Decay
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II. Differential Rate Equations vs Integral Convolution
Kinetics

The kinetics associated with Scheme 1 can be represented in
terms of the differential rate equations

where the association 1*+ M f 2* is described by the
molecular rate coefficientk21

m(t). The rate equation 1 and 2 are
formally exact, but the rate coefficientk21

m(t) needs to be
determined separately.4-6

First, let us consider the limiting situation when the associa-
tion is slow, or when the pseudo-steady state develops, so that
the time-dependent coefficient,k21

m(t), can be replaced by a rate
constant k21. A delta function pulse produces the initial
concentrations [1*(0)] and [2*(0)]. The concentrations [1*(t)]
and [2*(t)] are given by:

where

and

At the steady state produced by constant excitation rates,I1
ss)

k10
ss and I2

ss ) k20
ss[2] , the concentrations are

Equations 3, 4 and 11, 12 are valid only when the time-
independent rate constantk21 provides an adequate description
of the kinetics. Here we are interested in the effects of transient
kinetics which produce deviation from the classical results in
eqs 3, 4 and 11,12.
A different approach, which is favored in photochemistry, is

the convolution method.10-12 This approach assumes that
fluorophores are independent, and therefore, one can focus on
the fate of a single fluorophore molecule. The quantity of
primary interest is the survival probabilityS(t) of a fluorophore
excited at timet ) 0 and initially surrounded by a given
distribution of reactive partners. The macroscopic effect of
excitation then is obtained through the summation (convolution)
of the effects due to individual “isolated” molecules. Because
of the characteristic convolution integrals appearing in the
ensuing formulae, we call this approach the convolution kinetics
method.
The method of convolution kinetics for Scheme 1 considers

two states of a fluorophore molecule: unbound ()1*) and bound
()2*). The macroscopic kinetics is viewed as the average of
sequences of elementary generation events, each separated by
a sequence of dissociation-association events and followed by
a decay event. The kinetics of association events is character-
ized by the survival probability of the unbound state, 1*, with
respect to association, 1*+ M f 2*. In this paper we deal
with association at the distance of closest approachR, i.e. with
the Smoluchowski-Collins-Kimball reactivity model. This
allows one to express approximately the complicated kinetics
in terms of the well-known time-dependent rate coefficient of
irreversible association,k21(t).7-9 It is important to stress that,
in general, the molecular rate coefficientk21

m(t) in the rate
equations 1 and 2 depends on the rates of all the processes in
Scheme 1 and is different fromk21(t). In the next section we
derive the following integral convolution equations representing
the kinetics of Scheme 1 (see also Appendix)

and

whereX denotes a convolution. The excitation rates areI1(t)
) k10(t) [1] and I2(t) ) k20(t)[2], and the survival probability is
given by

SCHEME 2: Excimer Formation

d
dt
[1*( t)] ) -k21

m(t)[M][1*( t)] + k12[2*( t)] - k01[1*( t)] +

k10(t)[1] (1)

d
dt
[2*( t)] ) -k21

m(t)[M][1*( t)] + k12[2*( t)] - k02[2*( t)] +

k20(t)[2] (2)

[1*( t)] ) R11 exp(γ1t) + R12 exp(γ2t) (3)

[2*( t)] ) R21 exp(γ1t) + R22 exp(γ2t) (4)

γ1,2) - 1
2
{X1 + X2 ((X1 - X2)

2 + 4k12k21[M])
1/2} (5)

X1 ) k01 + k21[M], X2 ) k02 + k12 (6)

R11 ) 1
γ2 - γ1

{+[1*(0)](X1 + γ2) - [2*(0)]k12} (7)

R12 ) 1
γ2 - γ1

{-[1*(0)](X1 + γ1) + [2*(0)]k12} (8)

R21 ) 1
γ2 - γ1

{-[1*(0)]k21[M] + [2*(0)](X2 + γ2)} (9)

R22 ) 1
γ2 - γ1

{-[1*(0)]k21[M] + [2*(0)](X2 + γ1)} (10)

[1*(∞)] )
I1
ss(k12 + k02) + I2

ssk12
k21[M] k02 + k01(k12 + k02)

(11)

[2*(∞)] )
I1
ssk21[M] + I2

ss(k21[M] + k01)

k21[M] k02 + k01(k12 + k02)
(12)

[1*( t)] ) I1(t) X [S(t|eq)e-k01t] +

k12[2*( t)] X [(k21(t)/k21
0 )S(t|eq)e-k01t] (13)

[1*( t)] + [2*( t)] ) [I1(t) + I2(t)] X e-k02t +

(k02 - k01)[1*( t)] X e-k02t

) [I1(t) + I2(t)] X e-k01t +

(k01 - k02)[2*( t)] X e-k01t (14)
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Equations 13 and 14 describe the kinetics of Scheme 1, where
allowance is made for decay and generation ofboth species 1
and 2. Equations 13 and 14 are the main results of this paper
and can be solved numerically to determine the individual
concentrations [1*] and [2*]. In the general case, when the
rate coefficientk21(t) is time dependent and M> 0, the
convolution kinetics 13 and 14 offer an approximate representa-
tion of the underlying many-particle problem. When the rate
coefficientk21 becomes a constant and [M]> 0, the convolution
kinetics 13 and 14 become exact and reduce, as expected, to
the classical case of eqs 3 and 4. In the limiting situation where
[M] f 0, the convolution formulae 3 and 4 also become exact
and represent the kinetics of a mixture of independent fluoro-
phores 1* and 2* (see section IV.C).
It is instructive to compare the differential rate equations 1

and 2, which are usually associated with extended Smolu-
chowski approaches, to the integral equations 13 and 14 of
convolution kinetics. They provide different, approximate
representations of the kinetics. Similarly to the case of
monomer-excimer kinetics,10-12 the convolution kinetics 13
and 14 can be cast in the form of differential equations 1 and
2, to give approximate expressions for the molecular rate
coefficientk21

m(t). To see this let us first note that upon adding
eqs 1 and 2 one recovers the rate equation

whose formal solution is given by eq 14. Thus, it is enough to
show that eq 13 can be converted into eq 1. Following
Berberan-Santos and Marthino,11 one can use the relation

and differentiate eq 13 to recover eq 1 with the molecular rate
coefficient determined by

The concentrations [1*(t)] and [2*(t)] in eq 18 are obtained by
solving the convolution kinetics equations 13 and 14. This can
be accomplished formally by Laplace transforming eqs 13 and
14, solving the resulting systems of linear equations for the
Laplace transforms of [1*(t)] and [2*(t)], and then back Laplace
transforming. Since the Laplace transforms cannot be done
analytically, the resulting formulae are unwieldy and are not
given here. The formal result (eq 18) shows that the rate
coefficientk21

m(t) corresponding to the convolution kinetics 13
and 14 is a function of time and concentration.

III. Microscopic Model and Transient Kinetics

The model we study here is an idealization of the situation
in a typical single-photon timing experiment. We assume that
the concentration of the fluorophores is small compared to that
of M, that the excitation intensity is low, and that the duration
of the excitation pulse is short. All this combined allows us to
focus on an ensemble of isolated 1* molecules, each surrounded
by an excess of M molecules. We will consider two survival

probabilities of 1*s, that differ from each other by a different
initial distribution of M’s surrounding a 1*. The survival
probabilityS(t|eq) is the probability that a 1* created att ) 0,
and surrounded initially by an equilibrium distribution of M’s,
has not undergone an association reaction, 1*+ M f 2*, until
the momentt. Thus,S(t|eq) is the survival probability with
respect to association with M, when an 1* is generated by
external excitation. The survival probabilityS(t|R) is the
survival probability of an 1* generated by an elementary
dissociation event 2*f 1* + M. Now the initial distribution
of M’s is a nonequilibrium one, since the geminate M is added
to the sea of equilibrated M’s. The notation|eq) serves as a
reminder of an initial equilibrium distribution of M’s, whereas
|R) means that an additional M is present at the contact distance
R. The two survival probabilities can be related as7

whereS2(t|R) is the survival probability of an isolated 1*Mpair,
initially separated byR. Equation 19 is exact for an immobile
1* and noninteracting point M’s. In general, however, eq 19
is only an approximation equivalent to the assumption that a
geminate pair is independent of other M’s in the system.
Further development depends on the assumed model of the

association. Here, we consider the Smoluchowski-Collins-
Kimball (SCK) reactivity model, i.e. association uponcontact
at the distance of closest approachR. The intrinsic rate constant
is k21

0 . For the sake of simplicity we ignore the interparticle
forces. For the SCK model we have7

The survival probability

now involves the well-known SCK time-dependent rate coef-
ficient18

where

The time integral of the SCK rate coefficient is also known18

Thus, for the SCKmodel adopted here, the survival probabilities,
S(t|eq) andS(t|R), are known explicitly.
Now we introduce the kinetic formalism for Scheme 1

extending the approach developed by Agmon and Szabo.7,8First,
let us consider reversible association, 1*+ M h 2*, with no
generation and decay. In this case, the sum of the concentrations
[1*] + [2*] of species 1* and 2* is a constant equal to its initial
value [1*(0)]+ [2*(0)] , but the individual concentrations, [1*]-
and [2*] , change in time. For the concentration of species 1*,
one can write

S(t|eq)) exp(-[M]∫0tk21(t′) dt′) (15)

d
dt

{[1*( t)] + [2*( t)]} ) -k01[1*( t)] - k02[2*( t)] +

k10(t)[1] + k20(t)[2] (16)

d
dt
[x(t) X y(t)] ) x(t) X

dy(t)
dt

+ x(t) y(0+) (17)

k21
m(t)[M][1*( t)] ) k01[1] X [k21(t)S(t|eq)e-k01t][M] +

k12[2*( t)] X {(k21(t)/k21
0 )S(t|eq)e-k01t(k21(t)[M] -

d[ln k21(t)]/dt)} (18)

S(t|R) ) S2(t|R) S(t|eq) (19)

S2(t|R) )
k21(t)

k21
0

(20)

S(t|eq)) exp(-[M]∫0tk21(t′) dt′) (21)

k21(t) )
k21
0

1+ κ21
0
[1 + κ21

0 exp(x2) erfc(x)] (22)

x(t) ) (1+ κ21
0 )t1/2/τD

1/2
κ21
0 ) k21

0 /kD, kD ) 4πRD,

τD ) R2/D (23)

∫0tk21(t′) dt′ )
k21
0

1+ κ21
0
t +

κ21
0 τDk21

0

(1+ κ21
0 )3

[exp(x2) erfc(x) - 1+

2x/π1/2] (24)
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Equation 25 expresses the fact that there are two contributions
to [1*] , one coming from the 1*s present att ) 0 and the
other from those generated by dissociation of 2*s at different
instancest′. We assume that each 1* present att ) 0 is
surrounded by an equilibrium distribution of M’s. Thus the
decay of the initial population of 1*s is described by the survival
probabilityS(t|eq). At each time interval dt′, the number density
of the 1*s generated by dissociation isk12[2*( t′)] dt′, and the
number density of those that have survived till timet is
k12[2*( t′)]S(t-t′|R) dt. The integral on the right of eq 25 is the
sum of additive contributions since the initial momentt ) 0.
Using relations 19 and 20, eq 25 can be cast into the form

whereK*d ) k12/k21
0 . In the second step, we include the decays,

1* f 1 and 2*f 2, but still leave out the excitation. Now,
the sum of the concentrations changes in time according to

and the time evolution of [1*] in eq 26 is modified by the decay
1* f 1 as

Equation 28 differs from eq 26 by the factor exp(-k01t), so that
the productS(t|eq)e-k01t is the survival probability with respect
to association and decay.
Finally, we introduce the effect of production of 1* and 2*

with the ratesI1(t) ) k01[1] and I2(t) ) k02[2] , respectively.
The rate equation 27 becomes eq 16, and the concentration of
1* evolves according to

Note that the production rateI1(t) ) k10[1] enters only the first
term on the right of eq 29. This is because this term describes
the 1*s created by excitation and surrounded initially by an
equilibrium distribution of M’s. The second term is only
indirectly dependent on the generation rate via the concentration
[2*( t)] and the rate equation 27. Equations 16 and 29 can be
easily transformed to the form in eqs 13 and 14 that is more
suitable for numerical calculations. An alternative derivation
of the convolution kinetics is outlined in the Appendix. We
also note that similar convolution relations were suggested by
Berg.19

Scheme 1, unlike in the excimer formation Scheme 2, allows
for direct excitation of species 2. This opens up a possibility
of using convolution kinetics to determine whether species 2 is
present in equilibrium with 1, given that 2 is directly excitable.
A closely related question is whether transient kinetics can be
distinguished from classical kinetics and used to access the
molecular parameters. To illustrate those issues, we focus on
theδ-function pulse generation mode producing a nonzero initial
concentration [2*(0)]> 0. It is convenient to introduce the
characteristic diffusional lifetimeτD ) R2/D and the character-
istic ratekD ) 4πRDand use the following scaled, dimensionless
quantities

and the scaled concentrations

Equations 13 and 14 can be nondimensionalized and solved
recursively by discretizing the dimensionless time,θ ) n∆θ,
using the trapezoidal rule. Givenp1*(0) andp2*(0), the values
p1*(∆θ) and p2*(∆θ) are first obtained, thenp1*(2∆θ) and
p2*(2∆θ) follow, and so on.
Figures 1 and 2 present the dimensionless concentrationp2*

as a function of dimensionless timeθ for φ ) 0.5/3,κ21
0 ) 5,

andκ12 ) 2, andκ01) κ02 ) 0.2. The solid lines correspond to
the initial concentrationp2*(0) ) 0.2, i.e. one out of five
molecules excitated by the initial pulse is a 2* molecule. The
curves are normalized so that the maximum valuep2*max ) 1.
Figure 1 compares the normalized decays calculated for the
initial value p2*(0) ) 0.2 (solid line) and for the case where

Figure 1. Dimensionless concentrationp2* normalized top2*max ) 1
as a function of dimensionless timeθ for φ ) 0.5/3,κ21

0 ) 5, κ12 ) 2,
and κ01 ) κ02 ) 0.2. The initial concentration isp2*(0) ) 0.2, solid
line; 0, broken line.

Figure 2. Same as Figure 1 withp2*(0) ) 0.2. Line 2 is calculated
using the convolution kinetics. Line 1 is calculated using the “long
time” rate constantsκ21(∞) replacingκ21(θ). Line 3 is calculated with
the rate coefficient replaced by its initial valueκ21(θ) f κ21

0 .

θ ) t/τD, κ21(t) ) k21(t)/kD, κ21
0 ) k21

0 /kD, κ12 ) k12τD,

κ01 ) k10τD, κ02 ) k20τD, φ ) 4/3πR
3[M] (30)

p1*(θ) )
[1*(θ)]

[1*(0)] + [2*(0)]
, p2*(θ) )

[2*(θ)]
[1*(0)] + [2*(0)]

(31)

[1*( t)] ) [1*(0)]S(t|eq)+ k12∫0t[2*( t′)]S(t-t′|R) dt′ (25)

[1*( t)] ) [1*(0)]S(t|eq)+ K*d[2*( t)] X [k21(t)S(t|eq)] (26)

d
dt

{[1*( t)] + [2*( t)]} ) -k01[1*( t)] - k02[2*( t)] (27)

[1*( t)] ) [1*(0)]S(t|eq)e-k01t +
K*d[2*( t)] X [k21(t)S(t|eq)e-k01t] (28)

[1*( t)] ) I1(t) X [S(t|eq)e-k01t] +

K*d[2*( t)] X [k21(t)S(t|eq)e-k01t] (29)
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species 2 is not directly excited,p2*(0)) 0 (broken line). Figure
1 shows that the proper timing of the initial pulse can be critical
for the kinetic identification of the process 2f 2*.
Figure 2 compares the convolution kinetics (line 2) with the

classical predictions of eqs 3 and 4 (lines 1 and 3). The line
indicated as “1” was calculated using the “long time” rate
constantsκ21(∞) replacingκ21(θ). This is equivalent to the
classical result 3 and 4 with the forward rate constantk21)
k21
0 kD/(k21

0 + kD) and the renormalized backward rate constant
k12 f k12kD/(k12

0 + kD). The “3” line was calculated with the
rate coefficientκ21(θ) replaced by its initial valueκ21(θ) f

κ21
0 . This corresponds to the choicek21 ) κ21

0 in the classical
formulae 3 and 4. The convolution kinetics 2 clearly deviate
from the classical ones 1 and 3. We note that curve 2 is
sandwiched between the classical kinetics predictions 1 and 3.
This suggests that with an appropriate choice of the parameters,
the classical kinetics can be used to fit the transient kinetics,
but the recovered parameters will have no simple relation to
the microscopic quantities.

IV. Limiting Situations

In this section we examine three limiting situations of the
general formalism. First, we show that for the reversible
association, 1*+ M h 2*, with no generation or decay the
convolution kinetics produces the correct equilibrium concentra-
tions. Second, we consider steady states and show how the
present approach can be formulated in terms of the molecular
rate coefficients. Third, we consider the low M density limit
where the convolution kinetics become exact.
A. Reversible Association with No Decay and Generation.

As a check on the convolution kinetics, let us consider reversible
association 1*+ M h 2*, when decay is turned off, eq 26. In
this case the system should reach equilibrium, where the
concentrations [1*(∞)] and [2*(∞)] are determined byK*d )
k12/k21

0

irrespective of the initial values [1*(0)] and [2*(0)]. Agmon
and Szabo7,8 considered the case where all the excited fluoro-
phores are initially bound, [2*(0)]> 0 and [1*(0)]) 0, as well
as the case of initially unbound fluorophores, [2*(0)]) 0 and
[1*(0)] > 0, and showed that the equilibrium limit of the
convolution kinetics are independent of the initial condition, as
it should be. A similar approach can be used to show that the
convolution kinetics (eq 26) give the correct equilibrium limit
in the general case [1*(0)]> 0 and [2*(0)] > 0. Laplace
transforming eq 25 and using the relation7

that follows from the definition 21, we get

Multiplying by the Laplace variablesand taking the long time
limit s f 0, we finally get

Note that relations 35 are independent of the initial ratio
[1*(0)]/[2*(0)], and of a particular form ofk21(t), and are
consistent with the equilibrium constant expression 32.
B. Nonequilibrium Steady States. In this section we

consider nonequilibrium steady states produced by the constant
generation ratesk21

0 I1
ss ) k10[1] and I2

ss ) k20[2]. The steady-
state form of eq 16 is

From definition 21 follows the following relation

that can be used to write the Laplace transform of eq 29 as

Upon solving eqs 36 and 38 for the steady-state concentrations,
we get

and

Equations 39 and 40 can be used to calculate the Stern-Volmer
plots. When the rate coefficientk21 is a constant,Ŝ(k01|eq))
(k01+ k21[M])-1 and eqs 39 and 40 reduce to the classical result
11 and 12. In this connection we note that the magnitude of
the transient effects is determined by the quantityŜ(k01|eq). This
fact can be used to construct a measure of transient effects for
Scheme 1.
It is important to distinguish between the irreversible rate

coefficientk21(t), determining the survival probabilityS(t|eq),
and the molecular rate coefficient of association,k21

m , defined
via the number of elementary association events per unit volume
and time. To illustrate the difference between those two
quantities, we formulate the steady-state problem in terms of
the steady-state molecular rate coefficient,k12

ss. At steady
state, the rate equations 1 and 2 become

Equations 41 and 42 are an exact representation of the steady-
state problem, but the coefficientk21

ss is still undetermined.
Equations 41 and 42 can be solved to give

K*d )
[1*(∞)][M]
[2*(∞)]

(32)

∫0∞e-stk21(t) S(t|eq) dt ) [M] -1 [1 - sŜ(s|eq)] (33)

[1̂*(s)] ) [1*(0)] Ŝ(s|eq)+
K*d
[M] ([1*(0)] + [2*(0)]

s
- [1̂*(s)]) (1- sŜ(s|eq)) (34)

[1*(∞)]
[1*(0)] + [2*(0)]

)
K*d

[M] + K*d
,

[2*(∞)]
[1*(0)] + [2*(0)]

)
[M]

[M] + K*d
(35)

k01[1*(∞)] + k02[2*(∞)] ) I1
ss+ I2

ss (36)

∫0∞e-stk21(t) S(t|eq)e-k01t dt )

[M] -1[1 - (s+ k01) Ŝ(s+ k01|eq)] (37)

[1*(∞)] - [2*(∞)]K*d[M]
-1[1 - k01 Ŝ(k01|eq)]) I1

ss Ŝ(k01|eq)
(38)

[1*(∞)] )
(I1
ss+ I2

ss)K*d[M]
-1[1 - k01Ŝ(k01|eq)]+ I1

ssk02Ŝ(k01|eq)
k02 + k01K*d[M]

-1[1 - k01Ŝ(k01|eq)]
(39)

[2*(∞)] )
I1
ss[1 - k01Ŝ(k01|eq)]+ I2

ss

k02 + k01K*d[M]
-1[1 - k01Ŝ(k01|eq)]

(40)

0) -k21
ss[M][1*( ∞)] + k12[2*(∞)] - k01[1*(∞)] + I1

ss (41)

0) +k21
ss[M][1*( ∞)] - k12[2*(∞)] - k02[2*(∞)] + I2

ss (42)
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Equations 39, 40 and 43, 44 allow one to approximate the
steady-state molecular rate coefficientk21

ss using convolution
kinetics. For instance, one can identify the right hand sides of
eqs 39 and 43 and solve fork21

ss. Here suffice it to say that the
formulation in terms of the rate equations involving the
molecular rate coefficient involves the molecular rate coefficient,
k21
ss, which is concentration dependent, and is a function of the
rates of all concurrent processes in the system.
C. Low-Density Limit. Convolution kinetics are not exact

when the rate coefficientk21(t) is time dependent and the
concentration of M is finite, [M]> 0. This is because the
formalism assumes that each 2* is surrounded by an equilibrium
distribution of M’s, irrespective of whether an 2* has just been
generated by light absorption or has undergone a series of
previous association and dissociation events. In the latter case
the distribution of M’s is a nonequilibrium one, so that a
dissociation event produces a geminate pair in a sea of
nonequilibrated M’s. In general, the ensuing association kinetics
can only approximately be described by the survival probability
S(t|R) given by eq 19. However, for slow association or when
[M] f 0, the above formalism becomes exact. In the first case,
the association rate coefficient becomes a constantk21, and the
convolution kinetics reduce to the classical kinetics 3 and 4.
The second case when the convolution approach becomes

exact is the limit of low M concentration, with arbitraryk21(t).
In the limit [M] f 0, the dynamics of the present model reduce
to those of a (somewhat artificial) system of independently
generated 1*s and 2*s, where a 2* can dissociate to produce a
geminate M and is allowed to recombine only with that M. In
this limit, the survival probabilityS(t|eq)) 1 so that expression
13 becomes

whereas equation 14 stays unchanged. Equations 14 and 15
are exact and generalize to arbitrary excitation shapes the result
of Agmon and Szabo7,8 who considered aδ function excitation
producing initially [2*(0)] > 0 and [1*(0)] ) 0. For this
particular case, eq 45 becomes

which is equivalent to the result found previously.7,8

V. Comments and Summary

In this paper we have presented a convolution kinetic
description of Scheme 1. The main result was stated in section
2. In section 3 we derived the convolution kinetics from a
microscopic model. The resulting evolution equations 13 and
14 involve the time-dependent rate coefficient,k21(t), of
irreversible association, 1*+ M f 2*. The convolution kinetics
reduce to the classical rate equations whenk21 is a rate constant.
We stress that naively replacing the rate constantk21 in a

classical rate equation by its irreversible time-dependent coun-
terpart,k21(t), may lead to unsatisfactory results. For instance,
the rate equation corresponding the irreversible reaction 1*+
M f 2*

can be formally obtained by the substitutionk21 f k21(t) in the
classical rate equation. However, when an input, 1f 1*, with
the rateI1(t) is also present, the rate equation

can only be considered as an ad hoc approximation, unless
k21(t) is identified to be themolecular rate coefficientk21

m(t),
k21
m(t) * k21(t). The use of the molecular rate coefficients is
crucial in the extended Smoluchowski approach.4,17 Here, we
followed a route more familiar in photochemistry, and used the
convolution kinetics approach, so-called because of the char-
acteristic convolution integrals it involves. Accordingly, in place
of eq 48, we write the convolution relation

In section IV.B we found that the transient effects are
determined by the quantityŜ(k01|eq). This is the Laplace
transform of the survival probabilityŜ(s|eq), where the Laplace
variable is substituted by the rate constantk01. This suggest
that the coefficient

could be used as a measure of the transient effects in complex
kinetic schemes. As illustrated in section IV.B on the example
of the steady-state molecular rate coefficient, the overall
contribution of the transient effects depends on the rates of all
concurrent processes. Nevertheless, a deviation from unity of
the coefficientr is a necessary condition for the transients to
be visible.
In short, we have applied the method of convolution kinetics

to describe the transient, diffusion-mediated evolution of the
photochemical square, Scheme 1, for the Smoluchowski-
Collins-Kimball reactivity model. The main result of this work
is the two coupled evolution equations 13 and 14 determining
the concentrations of the excited-state species [1*] and [2*].
The present approach has been developed with a view to
interpreting single-photon timing experiments. Work along this
line is in progress.
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Appendix

Here we present another derivation of the evolution equations
following the formal recipe developed by Berberan-Santos et
al.12 The concentration of 1* is composed of the contribution
from the primary production rateI1(t) ) k10(t) [1] , i.e. from
external excitation, and the secondary production rate,I1

sec, i.e.
by dissociation. Accordingly, we have

and similarly

[1*(∞)] )
I1
ss(k12 + k02) + I2

ssk12

k21
ss[M] k02 + k01k12 + k01k02

(43)

[2*(∞)] )
I1
ssk21

ss[M] + I2
ss(k21

ss[M] + k01)

k21
ss[M] k02 + k01k12 + k01k02

(44)

[1*( t)] ) I1(t) X e-k01t + k12[2*( t)] X [(k21(t)/k21
0 )e-k01t] (45)

[1*( t)] ) k12[2*( t)] X [(k21(t)/k21
0 )e-k01t] (46)

d
dt
[1*( t)] ) -k21(t)[M][1*( t)] (47)

d
dt
[1*( t)] ) -k21(t)[M][1*( t)] + I1(t) (48)

[1*] )∫0tI1(t′) S(t-t′) dt, S(t) ) exp(-[M]∫0tk21(t′) dt′)
(49)

r ) {k01 + k21(∞)[M] } Ŝ(k01|eq) (50)

[1*( t)] ) I1(t) X [S(t|eq)e-k01t] + I1
sec(t) X [S(t|R)e-k01t],

I1
sec(t) ) k12[2*( t)] (51)
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where, according to Berberan-Santos et al.,12 one has

The primes onS′(t|eq) andS′(t|R) in eq 53 denote differentiation
with respect to time. Using relation 17 one can recover the
evolution equations 27 and 29.
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[2*( t)] ) I2(t) X e-(k01+k12)t + I2
sec(t) X e-(k01+k12)t,

I2(t) ) k20(t)[2] (52)

I2
sec(t) ) I1(t) X [S′(t|eq)e-k01t] + k12[2*( t)] X [S′(t|R)e-k01t]

(53)
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