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Convolution Kinetics with Generation and Decay for Reversible Excited-State Processes
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Transient diffusion-mediated reversible association accompanied by generation and decay is studied using
the method of convolution kinetics for the general scheme of intermolecular two-state excited-state processes.
This scheme describes several important photochemical and photophysical processes including excimer
formation, acid-base equilibria in the excited state, and associatiissociation of ions with their fluorescent
indicators. The convolution-type integral kinetic equations are derived. The relation of the present approach
to the extended Smoluchowski method is discussed.

I. Introduction SCHEME 1: Reversible Excited-State Association with

Recent developments in picosecond fluorometry combined Generation and Decay

with the global treatment of experimental fluorescence decays k3 (1)
allow detailed kinetic studies of complex photophysical i +M —_ 2
processe$;® The standard global analysis recovers the phe- Ky

nomenological rateonstantg' which mix forward and reverse
microscopic diffusional and reactive fluxes and, therefore, do
not allow a direct determination of the relevant molecular
quantities: the intrinsic rates, encounter distances, and diffusion
coefficients. In order to utilize the information contained in
transient kinetics, one needs to develop a description of
diffusional nonequilibrium effects for complex kinetic schemes.
In the present paper we pursue this issue and develop a theory 1 +M 2
of transient diffusion-mediated kinetics of the reversible two-
state excited-state processes as depicted in Scheme 1.

The stars on 1* and 2* indicate the excited state of species of convolution kinetic& 12 or as an extended Smoluchowski-
1 and 2. The first subscript on a rate constant or coefficient type method:81” Both methods are based on Smoluchowski’s
refers to the product molecule, 1* or 2*, and the second to the jgea that fast reaction in combination with slow diffusion leads
reactant molecule. The ground-state species are denoted by g, spatial disequilibrium and that this disequilibrium can be
0. The notation [1*], [2*], and [Q] means the concentration nqerstood in terms of a diffusion equation which is modified
of the corresponding species. We will assume that the excnatlon(e_g via boundary conditions) to allow for the effect of reaction.

is weak so that the ground-state equilibrium is not glisturbed, The convolution and extended Smoluchowski approaches are
[1] = const. and [2}= const., and that the concentration of M .\ jivalent for the basicirre versible reaction 1*+ M — 2,

. ! e ey _ :
'ShSUCh tlhat :he assomatflf(_)n_ #M .2d|s}.pszudo fr']rSt order. The difference shows up, however, in the way concurrent
The molecular rate coefficiertt,(t) is defined as the propor- processes (excitation, back reaction) are treated.

tionality coefficient between theolecularrate of the process . . —
(=the number of elementary reactive events per unit volume The approach that we adopt here is the convolution kinetics,
and time) and the density of reactive pdité. The rate which has proved useful in describing complex schemes relevant
. . 1 o
coefficient ki (t) reflects the time evolution of the spatial to photochemical k!netlck Spgcﬁmally, Ang‘O” and .Szaw .
focused on reversible association, and on its combination with

distribution of 1*M pairs. For slow association, #* M —
’ _ a1 2 .
2%, this distribution is an equilibrium one and the molecular 9€ca and Berberan-Santos and Marthifid? dealt with the
excimer formation Scheme 2. In this work, we extend the

coefficientk]}(t) is equal to the intrinsic rate constat. For nvolution formalism to includ neration and d in th
rapid association, spatial disequilibrium develops &) convoiution Tformaism to Include generation and decay N
. 0 . : excited-state kinetics of Scheme 1. Our motivation is, in part,
deviates fromk;,. Scheme 1 describes several important ; : :
) X . . . to develop a formalism that can be incorporated into the global
photochemical and photophysical processes including eXCIMer_ - \vsis of experimental data
formation, acid-base base equilibria in the excited state, and y p . ) .
associatiordissociation of ions with fluorescent ion indicators. ~ 1NiS paper is organized as follows. In the next section we
Transient effects on bimolecular reactions have recently beenPresent the main result of this work and compare the kinetic
a subject of considerable interest from both theoretical and tréatment of Scheme 1 in terms of the rate equations and
experimental viewpointé:1” The various approaches to tran- convolution kinetics. The integral convolution kinetic equations

kyo(t) ko kao(t) ko2

sient kinetics can be roughly classified as related to the methodare derived in section Il In section IV, limiting cases of the
formalism are considered. Finally, in section V we make some
€ Abstract published ilAdvance ACS Abstractsune 1, 1997. comments and summarize the paper.
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SCHEME 2: Excimer Formation
k5 (¢)
1* -+ M - 2*
kio

k1o(2) ko1 koo

I. Differential Rate Equations vs Integral Convolution
Kinetics
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1
Y2— "1

Opp = {—[1*(0)] kx[M] + [2%(0)](X, + ¥} (10)

At the steady state produced by constant excitation réfes,
Kip and I3’ = k32] , the concentrations are

17Tk + ko) + 15K,

1*(0)] = 11
e = Mk + Kok + k) )
1534M] + 153Ky [M] + kyy)

2*(o0)] = 12
o = Mk, T kokp + k) 2

Equations 3, 4 and 11, 12 are valid only when the time-
independent rate constait provides an adequate description
of the kinetics. Here we are interested in the effects of transient
kinetics which produce deviation from the classical results in
egs 3, 4 and 11,12.

The kinetics associated with Scheme 1 can be represented in A different approach, which is favored in photochemistry, is

terms of the differential rate equations

dgt 1*(0)] = —kAOMIL(O] + ky[2*(1)] — kog[1*(1)] +
k(O[] (1)

dgt[Z*(t)] = —kyOMMIII*( )] + ky[25(1)] — kof2*(D)] +
ko(D[2] (2)

where the association 1% M — 2* is described by the
molecular rate coefficierig;(t). The rate equation 1 and 2 are
formally exact, but the rate coefficierk;(t) needs to be
determined separatety®

the convolution metho#12 This approach assumes that
fluorophores are independent, and therefore, one can focus on
the fate of a single fluorophore molecule. The quantity of
primary interest is the survival probabiligt) of a fluorophore
excited at timet = 0 and initially surrounded by a given
distribution of reactive partners. The macroscopic effect of
excitation then is obtained through the summation (convolution)
of the effects due to individual “isolated” molecules. Because
of the characteristic convolution integrals appearing in the
ensuing formulae, we call this approach the convolution kinetics
method.

The method of convolution kinetics for Scheme 1 considers
two states of a fluorophore molecule: unbouadf) and bound
(=2*). The macroscopic kinetics is viewed as the average of
sequences of elementary generation events, each separated by

_ First, let us consider the limiting situation when the associa- a sequence of dissociatieassociation events and followed by
tion is slow, or when the pseudo-steady state develops, so thal decay event. The kinetics of association events is character-

the time-dependent coefficiend)(t), can be replaced by a rate
constantkz;. A delta function pulse produces the initial
concentrations [1*(0)] and [2*(0)]. The concentrations BJ(
and [2*(t)] are given by:

[1%(1)] = o3 €XPlyat) + 0y €Xplyyt)

[2%(1)] = a1 exply4t) + 0y eXPELL)

®3)
(4)

where

Vi2= — %{Xl + X, (X = X2)2 + 4k K4[M]) 1/2} (%)

X; = Koy + kyy[M], X, =Koy T Ky (6)

and
a= 1 LHLONX 1)~ ROk ()
o= ﬁ{ —[*OI(X + 7)) + 2Ok} (8)
Oy = ﬁ{ —[1O)kdM] + [250)](% + 72} (9)

ized by the survival probability of the unbound state, 1*, with
respect to association, X M — 2*. In this paper we deal
with association at the distance of closest apprdadte. with

the SmoluchowskiCollins—Kimball reactivity model. This
allows one to express approximately the complicated kinetics
in terms of the well-known time-dependent rate coefficient of
irreversible associatiompy(t).”~9 It is important to stress that,

in general, the molecular rate coefficiekf,(t) in the rate
equations 1 and 2 depends on the rates of all the processes in
Scheme 1 and is different frol(t). In the next section we
derive the following integral convolution equations representing
the kinetics of Scheme 1 (see also Appendix)

[15(8)] = 1,() ® [S(tleq)e '] +
ki 24(0] ® [(y (/Ko S(tleq)e ] (13)
and
[1%(0] + [25(0] = [15(t) + 1,(0] ® e ** +
(koo — koD [14(D)] ® 7
=[1,(t) + I(t)] ® e F' +
(kor — kol25 ()] ® &7 (14)
where® denotes a convolution. The excitation rates la(g

= kio(t) [1] andl,(t) = kxo(t)[2], and the survival probability is
given by
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_ - Uy probabilities of 1*s, that differ from each other by a different
Stied)= exp( [M]Lkﬂ(t)dt) (15) initial distribution of M’s surrounding a 1*. The survival

. . — probability St|eq) is the probability that a 1* createdtat O,
Equations 13 and 14 describe the kinetics of Scheme 1, wherey g g,rrounded initially by an equilibrium distribution of M's,

allowance is made for decay and genergtionbmﬂh specie; 1 has not undergone an association reactiontI¥ — 2*, until

and 2. Equations 13 and 1.4 are the main r_esults of_th|_s PapPeline momentt. Thus, St|eq) is the survival probability with
and can be solved numerically to determine the individual respect to association with M, when an 1* is generated by
concentrations [1%] and [2*]. In the general case, when the o iarna) excitation. The survival probabilitgtR) is the

rate cogffm@ntk;ﬁt) is time dependent a”‘%' M- 0, the survival probability of an 1* generated by an elementary
convolution kinetics 13 and 14 offer an approximate representa- yicqqciation event 2+~ 1* + M. Now the initial distribution
tion (_)f_the underlying many-particle problem. When th_e rate of M'sis a nonequilibrium one, since the geminate M is added
cpeff!mentkﬂ becomes a constant and [M]0, the convolution to the sea of equilibrated M's. The notati¢eq) serves as a
kinetics 13 and 14 become exact and reduce, as expected, Qeminder of an initial equilibrium distribution of M’s, whereas

tr'\]/le cIa%smsl case 0{ egs 3fand Al' IgtheJ'T't'lng sgtuatlon where o heans that an additional M is present at the contact distance
[M] — O, the convolution formulae 3 and 4 also become exact g he o survival probabilities can be related as

and represent the kinetics of a mixture of independent fluoro-
phores 1* and 2* (see section IV.C). StIR) = S(tIR) Stleq) 19)

It is instructive to compare the differential rate equations 1
and 2, which are usually associated with extended Smolu- whereSy(t|R) is the survival probability of an isolated 1*Wir,
chowski approaches, to the integral equations 13 and 14 ofinitially separated byR. Equation 19 is exact for an immobile
convolution kinetics. They provide different, approximate 1* and noninteracting point M’s. In general, however, eq 19
representations of the kinetics. Similarly to the case of is only an approximation equivalent to the assumption that a
monomer-excimer kineticg? 12 the convolution kinetics 13 geminate pair is independent of other M's in the system.
and 14 can be cast in the form of differential equations 1 and  Further development depends on the assumed model of the
2, to give approximate expressions for the molecular rate association. Here, we consider the Smoluchowsldllins—
coefficientkyy(t). To see this let us first note that upon adding Kimball (SCK) reactivity model, i.e. association upoantact

egs 1 and 2 one recovers the rate equation at the distance of closest appro&hThe intrinsic rate constant
q is kgl. For the sake of simplicity we ignore the interparticle
&{[1*(0] + [25D]} = —ko[1*(D)] — Ke[2*(1)] + forces. For the SCK model we hdve
ki o(D[1] + ko(D[2] (16 k,4(t
1002 + koo(D)[2] (16) S(tIR) = f(t() 20)
whose formal solution is given by eq 14. Thus, it is enough to 21

show that eq 13 can be converted into eq 1. Following
Berberan-Santos and Marthifbpne can use the relation

S(tieq)= exp-[M] [yl (t) di) (21)
I eyo=xne 2 +xyor  an ok

The survival probability

now involves the well-known SCK time-dependent rate coef-
and differentiate eq 13 to recover eq 1 with the molecular rate ficient'®

coefficient determined by 0

_ k21 0
EOMIL(V] = k1] © [l OStlea)s M) + =1, gt Fraemetc] @)
i2+(0] ® { (ke (O/IC)S(tIeq)e * (yy(OM] —
dlin (9} (19)

where

— 0\l 12 0 _ 10 —
The concentrations [1#)(] and [2%(t)] in eq 18 are obtained by X =1+ )" 1o =lerko, kp =47RD,
solving the convolution kinetics equations 13 and 14. This can 7, = R/D (23)
be accomplished formally by Laplace transforming egs 13 and o o
14, solving the resulting systems of linear equations for the The time integral of the SCK rate coefficient is also knéfvn
Laplace transforms of [1¥)] and [2*(t)], and then back Laplace 0 O 10
transforming. Since the Laplace transforms cannot be done /ot N 2l 21°DR21 . .
analytically, the resulting formulae are unwieldy and are not j;)kZl(t) dt = 1+ KSJ + 1+ K21)3LEXD(X2) erfc(x) — 1+
given here. The formal result (eq 18) shows that the rate
coefficientks;(t) corresponding to the convolution kinetics 13
and 14 is a function of time and concentration.

27 (24)

Thus, for the SCK model adopted here, the survival probabilities,
Stleq) andS(t|R), are known explicitly.
Now we introduce the kinetic formalism for Scheme 1
The model we study here is an idealization of the situation extending the approach developed by Agmon and Sz&buwst,
in a typical single-photon timing experiment. We assume that let us consider reversible association,+*M = 2*, with no
the concentration of the fluorophores is small compared to that generation and decay. In this case, the sum of the concentrations
of M, that the excitation intensity is low, and that the duration [1*] + [2*] of species 1* and 2* is a constant equal to its initial
of the excitation pulse is short. All this combined allows us to value [1*(0)]+ [2*(0)] , but the individual concentrations, [1*]-
focus on an ensemble of isolated 1* molecules, each surroundedand [2*] , change in time. For the concentration of species 1*,
by an excess of M molecules. We will consider two survival one can write

Ill. Microscopic Model and Transient Kinetics
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1.0

=T T T
~

[1%(D)] = [1*(0)] Stleq) + ki, fot [2*(O)]ISt-t|R) dt' (25)

Equation 25 expresses the fact that there are two contributions 0.8
to [1*] , one coming from the 1*s present at= 0 and the

other from those generated by dissociation of 2*s at different

instancest’. We assume that each 1* presenttat O is 0.6
surrounded by an equilibrium distribution of M’s. Thus the
decay of the initial population of 1*s is described by the survival
probability S(tjeq). At each time intervaltd the number density
of the 1*s generated by dissociationkg[2*(t')] dt', and the w
number density of those that have survived till tirheés |
ki2*(t)]S(t—t'|R) dt. The integral on the right of eq 25 is the 02 |
sum of additive contributions since the initial momént 0. ‘
Using relations 19 and 20, eq 25 can be cast into the form

0.0 L t Il Il
0.0 2.0 4.0 6.0 8.0 10.0

[1*(9] = [1*(0)]Stleq) + KF2*(1)] ® [k;y()Stieq)] (26) 0
) Figure 1. Dimensionless concentratiqn- normalized topzmax = 1
whereKg = I(12/k(2)1- In the s_econd step, we Inclqde_the decays, as a function of dimensionless tinefor ¢ =0.5/3,k3, =5, k12= 2,
1* — 1 and 2*— 2, but still leave out the excitation. Now, andkg = ko = 0.2. The initial concentration ip-(0) = 0.2, solid
the sum of the concentrations changes in time according to line; O, broken line.

1.0
%{ [15(0)] + [25(0]} = —koal1¥(D)] — kol2*(D)]  (27)
0.8

and the time evolution of [1*] in eq 26 is modified by the decay
1*—1as

[1%(0)] = [1*(0)] S(tlea)e *** + ;
Ki2*()] @ [kyy(D)S(tlea)e ] (28) ¢

Equation 28 differs from eq 26 by the factor exjgit), so that
the productS(tjeq)e ot is the survival probability with respect
to association and decay.

Finally, we introduce the effect of production of 1* and 2*
with the ratesli(t) = kog[1] and Ix(t) = koo[2] , respectively.

0.2

The rate equation 27 becomes eq 16, and the concentration of 000 20 a0 80 80 100
1* evolves according to 0

ot Figure 2. Same as Figure 1 with,«(0) = 0.2. Line 2 is calculated
[1*(t)] = 1,(t) ® [S(tleq)e ™*] + using the convolution kinetics. Line 1 is calculated using the “long

A% — kot time” rate constantszi() replacingxzi(6). Line 3 is calculated with
Kd[2 (0] ® [ky()S(tieq)e ™ (29) the rate coefficient replaced by its initial valug(0) — Kgl.

Note that the production rate(t) = kig[1] enters only the first = = 0 — =

term on the right of eq 29. This is because this term describese Utp, k() = knn(/ko, K2 kgl/kD7 4"12 Ky2Tp,
the 1*s created by excitation and surrounded initially by an ko1 = KigTp, Koz = Kooty ¢ = 17RIM] (30)
equilibrium distribution of M’'s. The second term is only .

indirectly dependent on the generation rate via the concentrationand the scaled concentrations

[2*(t)] and the rate equation 27. Equations 16 and 29 can be

easily transformed to the form in egs 13 and 14 that is more p.(6) = [1*(6)] p.(6) = (2*(0)]

suitable for numerical calculations. An alternative derivation ! [1%(0)] + [2*(0)]" "2 [1*(0)] + [2*(0)]

of the convolution kinetics is outlined in the Appendix. We (31)

also note that similar convolution relations were suggested by

Berg?? Equations 13 and 14 can be nondimensionalized and solved

Scheme 1, unlike in the excimer formation Scheme 2, allows recursively by discretizing the dimensionless tifle= nA#,
for direct excitation of species 2. This opens up a possibility using the trapezoidal rule. Givgn(0) andp.+(0), the values
of using convolution kinetics to determine whether species 2 is p1<(Af) and p2«(A6) are first obtained, them«(2A6) and
present in equilibrium with 1, given that 2 is directly excitable. p2+(2A6) follow, and so on.
A closely related question is whether transient kinetics can be  Figures 1 and 2 present the dimensionless concentrpgion
distinguished from classical kinetics and used to access theas a function of dimensionless tintefor ¢ = 0.5/3,k3, = 5,
molecular parameters. To illustrate those issues, we focus onandkiz = 2, andxo1= ko2 = 0.2. The solid lines correspond to
the o-function pulse generation mode producing a nonzero initial the initial concentrationp+(0) = 0.2, i.e. one out of five
concentration [2*(0)]> 0. It is convenient to introduce the molecules excitated by the initial pulse is a 2* molecule. The
characteristic diffusional lifetimep = R?%/D and the character-  curves are normalized so that the maximum valpgax = 1.
istic ratekp = 47RD and use the following scaled, dimensionless Figure 1 compares the normalized decays calculated for the
quantities initial value p2«(0) = 0.2 (solid line) and for the case where
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species 2 is not directly exciteph-(0) = 0 (broken line). Figure [1*(0)] K3

1 shows that the proper timing of the initial pulse can be critical * * = Ml + K*

for the kinetic identification of the process—2 2*. [1*(0)] 24; (O] M d
Figure 2 compares the convolution kinetics (line 2) with the [2*()] = [M]

classical predictions of egs 3 and 4 (lines 1 and 3). The line [1*(0)] +[2*(0)] [M] + K§

indicated as “1” was calculated using the “long time” rate

constantsc,i() replacing«,1(6). This is equivalent to the  Note that relations 35 are independent of the initial ratio

(35)

classical result 3 and 4 with the forward rate constgnt= [1*(0))/[2*(0)], and of a particular form ofka(t), and are
|<gl|<D/(|<g1 + kp) and the renormalized backward rate constant consistent with the equilibrium constant expression 32.

Kyo — k12kD/(k?_2 + ko). The “3” line was calculated with the B._ Nonequilib_r_iur_n Steady States. In this section we

rate coefficientc,1(6) replaced by its initial valuer,i(6) — consider nonequilibrium steady states produced by the constant

«2.. This corresponds to the choikg, = «2; in the classical ~ 9eneration ratesl* = kif1] and I5° = kef2]. The steady-
formulae 3 and 4. The convolution kinetics 2 clearly deviate State form of eq 16 is

from the classical ones 1 and 3. We note that curve 2 is

sandwiched between the classical kinetics predictions 1 and 3. koa[1¥(0)] + Ko [2*(e0)] = I35+ I5° (36)
This suggests that with an appropriate choice of the parameters,

the classical kinetics can be used to fit the transient kinetics, From definition 21 follows the following relation

but the recovered parameters will have no simple relation to

the microscopic quantities. fowefs i(0) S(t|eq)e—kolt dt =

[M] 1L — (s + ko) S5+ koleq)] (37)
IV. Limiting Situations
that can be used to write the Laplace transform of eq 29 as

In this section we examine three limiting situations of the
general formalism. First, we show that for the reversible [1%(c0)] — [2*(00)]K§[M]_1[1 — Koy é(k01|eq)]= |i5é(k01|e‘1)
association, 1*+ M = 2* with no generation or decay the (38)
convolution kinetics produces the correct equilibrium concentra-
tions. Second, we consider steady states and show how thepon solving eqs 36 and 38 for the steady-state concentrations,
present approach can be formulated in terms of the moleculare get
rate coefficients. Third, we consider the low M density limit

where the convolution kinetics become exact. [1%(0)] =

A. Reversible Association with No Decay and Generation. SS | 1SS eaingl =1 I & sy, &
As a check on the convolution kinetics, let us consider reversible (74 E)KEM] L k01S(k01|eq)A] + Ik Skonleq) (39)
association 1 M = 2*, when decay is turned off, eq 26. In Koo -+ KorKAIM] 71 — ko, S(ky1l€0)]
this case the system should reach equilibrium, where the
concentrations [1%)] and [2*(0)] are determined byj = and
kaalkpy

131 — ko1 S(korleq)] + 15°
o _ A ()IM] e = 0 JaXoleal L 40)
K§ = 2] (32) Koz + koiKEIM] 1 — ki S(kos/€0)]

Equations 39 and 40 can be used to calculate the Stéstmer
plots. When the rate coefficiekt; is a constantSkoi|eq) =
(kor + k21[M]) " and egs 39 and 40 reduce to the classical result
11 and 12. In this connection we note that the magnitude of
the transient effects is determined by the quar8fkgi|eq). This
fact can be used to construct a measure of transient effects for
Scheme 1.

It is important to distinguish between the irreversible rate
coefficientka(t), determining the survival probabilitg(tjeq),
and the molecular rate coefficient of associati&f), defined
via the number of elementary association events per unit volume
. . and time. To illustrate the difference between those two
jé) e k(1) Stleq) d = [M] 11— sYsleq)] (33) guantities, we formulate the steady-state problem in terms of
the steady-state molecular rate coefficiek};,. At steady
state, the rate equations 1 and 2 become

irrespective of the initial values [1*(0)] and [2*(0)]. Agmon
and Szab6® considered the case where all the excited fluoro-
phores are initially bound, [2*(0)} 0 and [1*(0)]= 0, as well

as the case of initially unbound fluorophores, [2*(8)]0 and
[1*(0)] = 0, and showed that the equilibrium limit of the
convolution kinetics are independent of the initial condition, as
it should be. A similar approach can be used to show that the
convolution kinetics (eq 26) give the correct equilibrium limit
in the general case [1*(0)} O and [2*(0)] > 0. Laplace
transforming eq 25 and using the relafion

that follows from the definition 21, we get

[1*(9] = [1*(0)] Ksleq) + 0 = —IIM][L*( )] + kyp[2%(0)] — koy[1*(e0)] + 15° (41)
[;_‘](w _ [i*(s)]) (- sqseq) @4y O TRIMIL ()] = kil2X(e)] = kl2X(e2)] + 157 (42)

Equations 41 and 42 are an exact representation of the steady-
Multiplying by the Laplace variable and taking the long time  state problem, but the coefficiend; is still undetermined.
limit s— 0, we finally get Equations 41 and 42 can be solved to give
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Iis(klZ + k02) + I2%(12

(1)) = = @3)
KoaIM] Ko + koikiz + Koikog

[2%(e0)] = |1%?1[M] + 150GIM] + koy) (44)
KoaIMI Ko + koikiz + Koikog

Equations 39, 40 and 43, 44 allow one to approximate the

steady-state molecular rate coefficidg using convolution

J. Phys. Chem. A, Vol. 101, No. 28, 1997129

SHA(0] = —HesOMITL( V) (47)

can be formally obtained by the substitutikya — kz;(t) in the
classical rate equation. However, when an input; 1*, with
the rately(t) is also present, the rate equation

% (0] = —kay(OIMI[*(O] + 1,(1) (48)

kinetics. For instance, one can identify the right hand sides of can only be considered as an ad hoc approximation, unless

egs 39 and 43 and solve f&};. Here suffice it to say that the
formulation in terms of the rate equations involving the
molecular rate coefficient involves the molecular rate coefficient,

ko1(t) is identified to be themolecularrate coefficientky)(t),
koy(t) = kag(t). The use of the molecular rate coefficients is
crucial in the extended Smoluchowski appro4é¢h.Here, we

k31, which is concentration dependent, and is a function of the followed a route more familiar in photochemistry, and used the

rates of all concurrent processes in the system.
C. Low-Density Limit. Convolution kinetics are not exact
when the rate coefficienky(t) is time dependent and the

convolution kinetics approach, so-called because of the char-
acteristic convolution integrals it involves. Accordingly, in place
of eq 48, we write the convolution relation

concentration of M is finite, [M]> 0. This is because the
formalism assumes that each 2* is surrounded by an equilibrium
distribution of M’s, irrespective of whether an 2* has just been
generated by light absorption or has undergone a series of

previous association and dissociation events. In the latter case ] )
the distribution of M's is a nonequilibrium one, so that a !N section IV.B we found that the transient effects are

dissociation event produces a geminate pair in a sea ofdetérmined by the quantitikoileq). This is the Laplace
nonequilibrated M’s. In general, the ensuing association kinetics transform of the survival probability(sieq), where the Laplace
can only approximately be described by the survival probability Variable is substituted by the rate constaat This suggest
S(tR) given by eq 19. However, for slow association or when that the coefficient

[M] — 0, the above formalism becomes exact. In the first case, «

the association rate coefficient becomes a constanand the = {kos 1 Kzy(«)[M] } Sky,l€Q)
convolution kinetics reduce to the classical kinetics 3 and 4.

The second case when the convolution approach becomegsould be used as a measure of the transient effects in complex
exact is the limit of low M concentration, with arbitrakg(t). kinetic schemes. As illustrated in section IV.B on the example
In the limit [M] — 0, the dynamics of the present model reduce Of the steady-state molecular rate coefficient, the overall
to those of a (somewhat artificial) system of independently contribution of the transient effects depends on the rates of all
generated 1*s and 2*s, where a 2* can dissociate to produce aconcurrent processes. Nevertheless, a deviation from unity of
geminate M and is allowed to recombine only with that M. In the coefficientr is a necessary condition for the transients to

this limit, the survival probability(tleq)= 1 so that expression  be visible.
13 becomes In short, we have applied the method of convolution kinetics

to describe the transient, diffusion-mediated evolution of the
photochemical square, Scheme 1, for the Smoluchowski
Collins—Kimball reactivity model. The main result of this work

whereas equation 14 stays unchanged. Equations 14 and 1?: the two coupled evolution equations 13 and 14 determining
I

[19] = [1,(t) St=t) dt,  S(t) = exp(~[M] [ kn(t) o)
(49)

(50)

[L¥()] = 15(t) ® 7" + Ky [25(1)] ® [(ky (/IS )€ ™| (45)

are exact and generalize to arbitrary excitation shapes the resu hﬁ concentrations of rt]hf] exctl)ted-s'zalte Tpec:jes [1;] and_ [27].

of Agmon and Szabl@ who considered a function excitation . te pri_sent_ a;?prora]\ct ?S. een deve Oi)e V\\;wtk all wem_ to
producing initially [2%(0)] > 0 and [1*(0)] = 0. For this :.“ erpreting single-photon iming expenments. Yvork along this

particular case, eq 45 becomes INE IS In progress.
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[1*(0] = ke d2*(D] ® [(Koy(t)/KO)e™ ] (46)

which is equivalent to the result found previousfy.

V. Comments and Summary Appendix

In this paper we have presented a convolution kinetic  Here we present another derivation of the evolution equations
description of Scheme 1. The main result was stated in SeCtiOﬂfo"owing the formal recipe developed by Berberan-Santos et
2. In section 3 we derived the convolution kinetics from a 3|12 The concentration of 1* is composed of the contribution
microscopic model. The resulting evolution equations 13 and from the primary production rati(t) = kio(t) [1] , i.e. from

14 involve the time-dependent rate coefficiem(t), of external excitation, and the secondary production igte.e.
irreversible association, H M — 2*. The convolution kinetics  py dissociation. Accordingly, we have

reduce to the classical rate equations wkgris a rate constant.
We stress that naively replacing the rate constantn a

classical rate equation by its irreversible time-dependent coun-

terpart,k1(t), may lead to unsatisfactory results. For instance,

the rate equation corresponding the irreversible reactiof 1*

M — 2%

[1%(0)] = 1,(t) ® [S(tleq)e ] + I3°() ® [S(tIR)e ™",
17°70) = kyf2*(1)] (51)

and similarly
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2*(t)] = 1,(H) ® o (ortkidt |- 159t ® o Cortkadt
15(t) = kyo()[2]

where, according to Berberan-Santos etabne has

(52)

15570 = 1,(t) ® [S(tleq)e "] + k;J2*(1)] ® [S(tIR)e ]
(53)

The primes or8(t|eq) andS(t|R) in eq 53 denote differentiation

with respect to time. Using relation 17 one can recover the

evolution equations 27 and 29.
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